
Bonus 1
Installing Spark

Starting with Spark can be intimidating. However, after you have gone through the
process of installing it on your local machine, in hindsight, it will not look as scary.

In this chapter, we will guide you through the requirements of Spark 2.1, the installation
process of the environment itself, and through setting up the Jupyter notebook so it is
convenient and easy to write your code.

The topics covered are:

• Requirements
• Installing Spark
• Installing in the cloud

Requirements
Before we begin, let's make sure your computer is ready for Spark installation. What you
need is Java 7+ and Python 2.6+/3.4+. Spark also requires R 3.1+ if you want to run R
code. For the Scala API, Spark 2.0.0 Preview uses Scala 2.11. You will need to use a
compatible Scala version (2.11.x).

Spark installs Scala during the installation process, so we just need to make sure that Java
and Python are present on your machine.

Throughout this book we will be using Mac OS X El Capitan, Ubuntu as our
Linux flavor, and Windows 10; all the examples presented should run on either
of these machines.

Checking for presence of Java and Python
On a Unix-like machine (Mac or Linux) you need to open Terminal (or Console), and on
Windows you need to open Command Line (navigate to Start | Run | cmd and press the
Enter key).

2

Throughout this book we will refer to Terminal, Console, or Command Line as
CLI, which stands for a Command Line Interface.

Once the window opens, type the following:,
java -version

If the command prints out something like this:
java version "1.8.0_25"

Java(TM) SE Runtime Environment (build 1.8.0_25-b17)

Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)

It means you have Java present on your machine. In the preceding case, we are running
Java 8 so we meet the first criterion.

If, however, executing the preceding command returns an error that is on Mac or Linux, it
might look similar to the following error:
-bash: java: command not found

Or, on Windows it might resemble the following error:
'java' is not recognized as an internal or external command, operable
program or batch file

It means that either Java is not installed on your machine or it is not present in the PATH.

PATH is an environment variable that a CLI checks for binaries. For example, if you type
the cd (change directory) command and try to execute in the CLI, your system will scan
the folders listed in the PATH searching for the cd executable and, if found, will execute
it; if the binary cannot be found, the system will produce an error.

To learn more about what the PATH variable does go to
http://www.linfo.org/path_env_var.html for more information.

If you are sure you have Java installed (or simply do not know) you can try locating Java
binaries. On Linux you can try executing the following command:
locate java

You can also check the /usr/lib/jvm location for a jvm folder.

3

Refer to your flavor of Linux documentation to find an equivalent method or an
exact location of the jvm folder.

On Mac, check the /Library/Java/JavaVirtualMachines/ location for a jdk or jre
folder, and on Windows you can navigate to C:\Program Files (x86)\ and check for
the Java folder. If the preceding efforts fail you will have to install Java (see the
following section, Installing Java).

In a similar fashion to how we checked for Java let's now check if Python is present on
your machine. In your CLI type, use the following command:
python --version

If you have Python installed the Terminal should print out its version. In our case, this is:
Python 3.5.1 :: Anaconda 2.4.1 (x86_64)

If, however, you do not have Python, you will have to install a compatible version on
your machine (see the following section, Installing Python).

Installing Java
It goes beyond the scope of this book to provide detailed instructions on how you should
install Java. However, it is a fairly straightforward process and the high-level steps you
need to undertake are:

1. Go to https://www.java.com/en/download/mac_download.jsp and
download the version appropriate for your system.

2. Once downloaded, follow the instructions to install on your machine.
That is effectively all you have to do.

If you run into trouble check
https://www.java.com/en/download/help/mac_install.xml for help on how to
install Java on Mac.

Check https://www.java.com/en/download/help/ie_online_install.xml for
steps outlining the installation process on Windows.

Finally, check https://www.java.com/en/download/help/linux_install.xml for
Linux installation instructions.

Installing Python

4

Our preferred flavor of Python is Anaconda (provided by Continuum) and we strongly
recommend this distribution. The package comes with all necessary and most commonly
used modules included (such as pandas, NumPy, SciPy, or Scikit among many others). If a
module you want to use is not present you can quickly install it using the conda package
management system.

The Anaconda environment can be downloaded from
https://www.continuum.io/downloads. Check the correct version for your operating
system and follow the instructions presented to install the distribution.

Note that for Linux we assume you install Anaconda in your HOME directory.

Once downloaded, follow the instructions to install the environment appropriate for your
operating system:

• For Windows, see
https://docs.continuum.io/anaconda/install#anaconda-for-
windows-install

• For Linux, see
https://docs.continuum.io/anaconda/install#linux-install

• For Mac, see
https://docs.continuum.io/anaconda/install#anaconda-for-
os-x-graphical-install

Once both of the environments are installed, repeat the steps from the above preceding
section, Checking for presence of Java and Python. Everything should work now.

Checking and updating PATH
If, however, your CLI still produces errors you will need to update the PATH. This is
necessary for CLI to find the right binaries to run Spark.

Setting the PATH environment variable differs between Unix-like operating systems and
Windows. In this section, we will walk you through how to set these properly in either of
these systems.

Changing the PATH on Linux and Mac
First, open your .bash_profile file; this file allows you to configure your bash
environment every time you open the CLI.

5

To learn what bash is, check out the following link
https://www.gnu.org/software/bash/manual/html_node/What-
is-Bash_003f.html

We will use vi text editor in CLI to do this, but you are free to choose any text editor of
your liking:
vi ~/.bash_profile

If you do not have the .bash_profile file present on your system - issuing
the preceding command will create one for you. If, however, the file already
exists, it will open it.

We need to add a couple of lines preferably at the end of the file. If you are using vi
press the i key on your keyboard (that will initiate the edit mode in vi), navigate to the
end of the file, and insert a new line by hitting the Enter key. Starting in the new line, add
the following two lines to your file (for Mac):
export PATH=/Library/Java/JavaVirtualMachines/jdk1.8.0_40.jdk/Cont
ents/Home/bin:$PATH

export PATH=/Library/Frameworks/Python.framework/Versions/3.5/
bin/:$PATH

On Linux:
export PATH=/usr/lib/jvm/java-8-sun-1.8.0.40/jre/bin/java:$PATH

export PATH=$HOME/anaconda/bin:$PATH

Note that on Mac there are only two lines; due to space constraints they appear
as four lines as the words Contents and bin were wrapped at the end of the
line.

Once done typing hit the Esc key and type the following command:
:wq

Once you hit the Enter key, vi will write and quit.

Do not forget the colon at the beginning of the :wq as it is necessary.

You will need to restart CLI for the changes to be reflected.

6

Changing PATH on Windows
First, navigate to Control Panel and click on System. You should see a screen similar as
the one shown in the following screenshot:

B05793_02_01.png

Click on Environment Variables and in the System variables search for Path. Once
found, click on Edit:

7

B05793_02_02.png

In the new window that opens click New and then Browse. Navigate to C:\Program
Files (x86)\Java\jre1.8.0_91\bin and click OK.

8

B05793_02_03.png

Once done, close the window by clicking on OK.

Next, check if under User variables for <your login> (where <your login> is the
name of your account, such as todrabas in the preceding example) there exists a variable
Path and if it lists any reference to Anaconda (it does in our preceding example).

However, if not then select the PATH and click Edit. Next, similarly to how we added the
Java folder earlier, click New and then Browse. Now, navigate to
C:\Users\\AppData\Local\Continuum\Anaconda3\Library\bin and click OK.

9

Once this is done, continue clicking the OK button until the System window closes.

Finally, open CLI and type the following command:
echo %PATH%

Your newly added folders should be listed there.

As a final step loop back to the Checking for presence of Java and Python section and
check if both Java and Python can now be accessed.

Installing Spark
Your machine is now ready to install Spark. You can do this in two ways:

1. Download source codes and compile the environment yourself; this gives
you the most flexibility.

2. Download pre-built binaries.
3. Install PySpark libraries through PIP (see here: http://bit.ly/2ivVhbH)

The following instructions for Mac and Linux guide you through the first way. We will
show you how to configure your Windows machine while showcasing the second option
of installing Spark.

Mac and Linux
We describe these two systems together as they both are Unix-like systems: Mac OS X's
kernel (called Darwin) is based on BSD, while the Linux kernel borrows heavily from the
Unix-world functionality and security.

Check
https://developer.apple.com/library/mac/documentation/Da
rwin/Conceptual/KernelProgramming/Architecture/Architect
ure.html or
http://www.ee.surrey.ac.uk/Teaching/Unix/unixintro.html
for more information if you feel so inclined.

Downloading and unpacking the source codes
First, go to http://spark.apache.org/downloads.html and go through the
following steps:

10

1. Choose a Spark release: 2.1.0 (Dec 28 2016). Note that at the time you read
this, the version might be different; simply select the latest one for Spark 2.x.

2. Choose a package type: Source code.
3. Choose a download type: Direct download.
4. Click on the link next to Download Spark; it should state something similar

to spark-2.1.0.tgz.
Once the download finishes, go to your CLI and navigate to the folder you have
downloaded the file to; in our case it is ~/Downloads/:
cd ~/Downloads

The tilde sign ~ denotes your home folder on both Mac and Linux.

To confirm the authenticity and completeness of the file, in your CLI, type the following
(on Mac):
md5 spark-2.0.0.tgz

Or use this code on a Linux system.
md5sum spark-2.0.0.tgz

This should produce a long string of numbers and letters; on our machine it looks like
this:
MD5 (spark-2.0.0.tgz) = 9484adbad908814481eb1b03ef2ef6f2

You can then compare this with the corresponding md5 checksum provided by Spark:
http://www.apache.org/dist/spark/spark-2.1.0/spark-2.1.0.tgz.md5

Next, we need to unpack the archive. This can be achieved with the following command:
tar -xvf spark-2.0.0.tgz

The -xvf options of the tar command make it easy to extract the archive (the x part) and
produce a verbose output (the v option) from a file (the f) that we specified.

Installing the package
Now, let's install the package. Go to the directory to the unpacked Spark codes:
cd spark-2.0.0

We will be building Spark with Maven and sbt, which we will later use to package up
our applications deployed in the cloud.

11

Maven is a build automation system that is used to install Spark. You can read
more at https://maven.apache.org. sbt stands for Scala build tool and
it is an incremental compiler for Scala. Scala is a scalable programming
language (that is where its name comes from: Scalable Language). The code
written in Scala compiles to a Java-bytecode, so it can run in Java Virtual
Environment (JVM). For more information, check out the following link
http://www.scala-lang.org/what-is-scala.html.

Installing with Maven
You do not need to install Maven explicitly as Spark source codes ship with mvn located
in the build folder; that will get us started.

First, you need to have the JAVA_HOME system variable specified properly and pointing to
where your Java JDK distribution is installed. This can be done with the help of the
following command on Mac:
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_40
.jdk/Contents/Home

Or the following command on Linux:
export JAVA_HOME=/usr/lib/jvm/open-jdk

Note that your distribution locations might be different, so you will have to
adapt the preceding commands to your system.

Having the Maven options and the JAVA_HOME environment variable set we can proceed
to build Spark.

We will build Spark with Hadoop 2.7 and Hive. Execute the following command in your
CLI (again, everything in one line):
./build/mvn -Pyarn -Phadoop-2.7 -Dhadoop.version=2.7.0 -Phive
-Phive-thriftserver -DskipTests clean package

Once you issue the preceding command the installer will download Zinc, Scala, and
Maven.

Zinc is a standalone version of sbt's incremental compiler.

If everything goes well you should see a screen similar to the following screenshot:

12

B05793_02_04_2.1.png

Installing with sbt
Installing Spark with sbt drills down to executing the following command:

13

./build/sbt -Pyarn -Phadoop-2.7 package

If all goes well you will see a final screen similar to this:

B05793_02_05_2.1.png

Testing the environment
Now that we have successfully built the environment, let's test it. Run the following
commands in your CLI:
./build/mvn -DskipTests clean package -Phive

./python/run-tests --python-executables=python

The preceding commands will clean up the installation and run tests of all modules of
PySpark (since we execute the run-tests inside the python folder). If you want to test
only a specific module of PySpark you can use the following command:
./python/run-tests --python-executables=python --modules=pyspark-sql

If you run the run-tests command without the --python-executables
switch, the environment will use the default Python installation (for us it was
Python 2.6). This might generate some errors, so we would recommend you
explicitly specify the --python-executables option. If you do not,
PySpark will try to run and compile tests against all the versions of Python
installed.

Once the tests finish, assuming all went well, you should see a screen similar to the
following screenshot:

14

B05793_02_06_2.1.png

Moving the environment
Once all the tests have passed, let's move our Spark environment away from its
temporary location in the ~/Downloads folder to our home folder and rename it Spark:
cd ~/Downloads

mv spark-2.0.0 ~/Spark

Once done you will be able to run the Spark from your directory.

15

First run
Now you can try running pyspark. Let's navigate to ~/Spark/bin and start the
interactive shell by using the following command:
cd ~/Spark/bin

./pyspark

You should see something similar to this:

B05793_02_07_2.1.png
You can test the environment by typing the following:,

print(sc.version)

The output should read:
2.1.0

The sc is SparkContext that is automatically created for you when PySpark starts.
Initializing a PySpark session creates a sqlContext as well. We will get to describing
what these are later in the book.

To exit the pyspark session type quit().

Windows
Installing Spark on Windows is also fairly straightforward. However, as mentioned
earlier, instead of building the whole environment from scratch we will download a
precompiled version of Spark.

16

Downloading and unpacking the archive
Go to http://spark.apache.org/downloads.html and select the following:

1. Choose a Spark release: 2.1.0 (Dec 28 2016). Note that at the time you read
this the version might be different; simply select the latest one for Spark 2.x.

2. Choose a package type: Pre-built for Hadoop 2.7 and later.
3. Choose a download type: Direct download.
4. Click on the link next to Download Spark; it should state something similar

to spark-2.1.0-bin-hadoop2.7.tgz.
In order to check the integrity and completeness of your download go to
https://www.microsoft.com/en-us/download/details.aspx?id=11533,
download the setup file, and install it. Once installed, go to CLI, navigate to your
Downloads folder, and use the following tool:
cd C:\Users\<your login>\Downloads

fciv -md5 spark-2.1.0-bin-hadoop2.7.tgz

This should produce a string of random looking letters and numbers similar to the
following one::
50E73F255F9BDE50789AD5BD657C7A71 spark-2.1.0-bin-hadoop2.7.tgz

You can compare the cited number with the corresponding md5 checksum found here
http://www.apache.org/dist/spark/spark-2.1.0/spark-2.1.0-bin-

hadoop2.7.tgz.md5.

Check this video for step-by-step instructions on how to install and use the fciv
tool https://www.youtube.com/watch?v=G08xum0AuFg

Let's unpack the archive now. If you have 7-Zip or another unarchiver that can handle
.tgz archives you are ready to go. However, if you do not have any unarchiver we
suggest you go to http://www.7-zip.org, download the version of 7-Zip that is
compatible with your system, and install it.

Once installed, go to (most likely) C:\Users\<your login>\Downloads and right-
click on the archive; a menu option 7-Zip should now have been added. Go to the 7-Zip-
| Extract here option. Note that this will be a two-step process: first you extract the .tar
archive from the .tgz file, and then follow the same process to extract the Spark folder
from the freshly extracted .tar archive.

17

Once done open the CLI and navigate to the folder you have just extracted the Spark
binaries to (we assume it is C:\Users\<your login>\Downloads\spark-2.0.0-
bin-hadoop2.7). Inside the folder, go to the bin folder and type pyspark:
cd C:\Users\<your login>\Downloads\spark-2.0.0-bin-hadoop2.7\bin

pyspark

Once you hit the Enter key you should see a screen similar to the following screenshot:

B05793_02_08_2.1.png
Note that while running Spark locally Hadoop installation is not required. However, even
though Spark might print some error messages when starting up, complaining about not
finding Hadoop binaries, it will still execute your PySpark code. Spark, according to the
FAQ from http://spark.apache.org, requires Hadoop (or any other distributed file system)
only when you deploy Spark on a cluster; running locally it is not necessary and the error
can be ignored.

18

Jupyter on PySpark
Jupyter is a convenient and powerful shell for Python where you can create notebooks
with embedded code. Jupyter's notebooks allow you to include regular text, code, and
images, and you can also create tables or use the LaTeX typesetting system. All in one
place, running above Python, it is a really convenient way of writing your applications
where you essentially keep your thoughts, documentation, and code in one place.

If you have never used Jupyter, to bring you up to speed, check out the Jupyter'
documentation: http://jupyter-
notebook.readthedocs.io/en/latest/examples/Notebook/Note
book%20Basics.html to learn how to navigate Jupyter notebooks.

Also, a word of warning is warranted here: JVM log messages from Spark are
not currently passed to Jupyter so for debugging you will have to go back to CLI
to read detailed debug messages.

Installing Jupyter
If you run Anaconda distribution of Python you can easily install Jupyter by running the
following command:
conda install jupyter

The command will install all the necessary modules Jupyter depends on as well as
Jupyter itself. If, however, you do not run Anaconda, follow the instructions on
http://jupyter.readthedocs.io/en/latest/install.html to install Jupyter
manually.

Throughout this book we will be using Jupyter almost exclusively to develop
and run our PySpark applications, so it is vital that you install Jupyter.

Setting the environment
Once you have Jupyter installed on your machine, let's get it to work with PySpark.
Getting it done, though, is a bit tricky.

We need to add the Spark environment's bin folder to the PATH environment variable and
set a couple of new variables.

19

Mac and Linux
First, let's again open your .bash_profile file:
vi ~/.bash_profile

Then add the following lines:
export PATH=$HOME/Spark/bin:$PATH

export PYSPARK_PYTHON=$HOME/anaconda/bin/python3

export PYSPARK_DRIVER_PYTHON=jupyter

export PYSPARK_DRIVER_PYTHON_OPTS='notebook' pyspark

In the first line we allow the bash environment to find the newly compiled binaries
(pyspark lives in the ~/Spark/bin folder). So now, you can simply type the following:
pyspark

instead of the following:
~/Spark/bin/pyspark

every time you want to start pyspark.

Adding the PYSPARK_PYTHON variable ensures that executors also run Python 3.5
(instead of the default Python 2.7).

Setting the PYSPARK_DRIVER_PYTHON environment variable to jupyter instructs the
system to, instead of running a PySpark interactive shell in the command line, to start a
Jupyter instance.

The PYSPARK_DRIVER_PYTHON_OPTS variable instructs Jupyter to pass the notebook
parameter to Jupyter and link it with a new instance of pyspark.

If you installed PySpark using pip you can just run jupyter and then import
the spark libraries and construct your SparkContext. We will not be delving
into this, however.

Windows
Following the same way we added and changed the environment variables earlier (see the
Changing PATH on Windows section), change the PATH variable to point to your Spark
distribution's bin folder. Next, add PYSPARK_DRIVER_PYTHON and set its value to
jupyter.

20

There is a small difference on Windows with regards to the last variable: the
PYSPARK_DRIVER_PYTHON_OPTS variable should only be set to
'notebook', that is, you need to omit the pyspark at the end.

Starting Jupyter
Now, every time you type
pyspark

in CLI, a new instance of Jupyter and PySpark will be created, and your default browser
will launch with the starting screen from Jupyter:

B05793_02_09.png

HelloWorld from PySpark
Jupyter, in the background, starts a local web server that allows you to visually navigate
your notebooks. Let's create our first example that will be our own version of the required
'helloWorld' example.

The code for this book is located on GitHub:
https://github.com/drabastomek/learningPySpark. Go to
Chapter02 for the Jupyter notebook for this example.

First, click on New and select the Python 3 notebook:

21

B05793_02_10.png
It will open a notebook in another tab in your browser, as shown in the following
screenshot

B05793_02_11.png
Now we can start coding. Type sc in the first cell and hit the Alt + Enter keys (or the
[Alt-Option + Enter-Return keys on Mac). This will execute the command and create a
new cell for our following code. The output of the command should look similar to the
following screenshot:

B05793_02_13.png
Remember that starting pyspark automatically creates the SparkContext object (and aliases
it as sc) as well as SQLContext (aliased as sqlContext). Let's see if sqlContext has properly
started: in the new cell type sqlContext and execute. The notebook should return
something similar to as shown in the following screenshot:

22

 B05793_02_14.png
Now we know all is running well.

Similarly to our example from the CLI PySpark interactive shell, let's print the version of
PySpark we're running: type print(sc.version) and execute. This should result in the
following:

2.1.0

We are in business!

As a last step, let's rename our notebook as it normally starts with the 'Untitled' title.
Navigate to File | Rename... and change the name to your liking; we changed it to
HelloWorldFromPySpark; this automatically changes the filename for you as well.

To stop the notebook (what you should do every time you want to finish working with a
notebook) you go to File and click on the Close and Halt option. What this does is it
closes the notebook, but also stops the Python kernel releasing the memory.

Installing in the cloud
If you do not want to install Spark locally on your computer, you can jump to Chapter
12, Free Spark Cloud Offering where we present how to sign up for the Community
Edition of Spark on Databricks' cloud and how to set up your own cluster on Microsoft's
Azure.

Summary
In this chapter, we walked you through the (sometimes painful) process of setting up your
local Spark environment. We showed you how to check if two required environments
(Java and Python) were present on your machine. We also provided some guidance on
how to install it on your system in case these two packages were missing.

Even though the process of installing Spark itself might be intimidating at times, we hope
with our help you were able to successfully install the engine and execute the minimal
code presented in this chapter. At this point you should be able to run code in Jupyter
notebook and be well prepared for what we will dive into in the rest of this book.

In the next chapter we will cover one of the fundamental data structures in Spark: the
Resilient Distributed Datasets, or RDDs. We will show you how to create and modify

23

these schema-less data structures using transformers and actions so your journey with
PySpark can begin.

