

Bonus 2
Free Spark Cloud Offering

So far, we have worked with Spark on your machine only. Since Spark was designed
with a build locally - deploy to cluster paradigm in mind, it is about time for us to move
to the cloud with some of our code.

In this chapter, we will look at two free trial offers from Databrick, and Microsoft's
HDInsight. Each of these options is slightly different to work with, but they all share the
same underlying capabilities of Spark Note that, there are also other free providers of
Apache Spark available, including:

• Amazon EMR:
http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseG
uide/emr-spark.html
• Google Cloud: https://cloud.google.com/hadoop/
• IBM Analytics for Apache Spark:
http://www.ibm.com/analytics/us/en/technology/cloud-data-
services/spark-as-a-service

In this chapter, you will learn:

• What the Databricks Community Edition has offer
• How to sign up, configure and run a cluster on Databricks
• How to monitor the execution of your jobs
• What Microsoft's Spark on HDInsight offers
• What are the steps to sign up and set up your cluster
• How to run and monitor your jobs with HDInsight

Databricks Community Edition
Databricks is a data platform that provides data integration, real-time exploration, and
production pipelines as a managed cloud service powered by Apache Spark. The team
that created Apache Spark also founded Databricks in 2013. Currently, Databricks is built

2

on top of AWS Cloud Services. .The Databricks platform itself provides a wide range of
features designed for data engineers and data scientists including the features noted in the
following section.

Notebooks and Dashboards
A collaborative interactive workspace that is designed for data scientists and data
engineers, Databricks provides an integrated environment that allows you to execute
Python, Scala, R, SQL, and Markdown within the same notebook. In addition to the
native visualizations, Databricks notebook allows you to integrate popular visualization
libraries including matplotlib, ggplot, and D3 (as shown in the following screenshot):

B05793_12_38.png

3

Also, within the same integrated environment, multiple users can collaborate on the same
notebook, comment, track with revision history (including GitHub integration),
autocomplete, and so on:

B05793_12_41.png
To help make it easier to debug your notebooks, the Databricks notebook also includes a
real-time progress bar that also directly integrates Apache Spark's Web UI into the
notebook. The following screenshot shows the Spark Web UI DAG visualization that is
embedded directly into the notebook for the textFile.count() action:

4

B05793_12_43.png

Connectivity
Databricks allows you to connect to your data via your favorite BI tools and REST APIs:

• Secure SQL Server for BI Tools: Databricks allows you to securely
connect and query your data within Databricks managed Apache Spark
clusters using your favorite BI tool such as Tableau, Qlik, and PowerBI
• REST API: From cluster management to uploading third-party
libraries to executing commands and contexts, you can script out these
commands using the Databricks REST API

Jobs and workflows
Databricks has Jobs and Workflows functionality that allows you to easily take your
development notebooks and run them in production. In addition to a flexible schedule,
with Databricks you can run notebooks, Spark JARs, and Jobs. The Jobs feature provides
run log history, retries, notifications, and flexible cluster support (for example, reusing
existing clusters or launching on-demand clusters).

5

Cluster management
These features are built on top of Databricks managed services with easy-to-use Apache
Spark cluster management. You can launch on-demand or spot clusters in a matter of
minutes with just a few clicks. Important infrastructure features include high availability,
elasticity, 100% Spark Version compatibility, automatic upgrades, and multiple instance
types. All of this is supported and tuned for optimal performance by the experts who
created Apache Spark.The following is a screenshot of the Databricks Community
Edition Cluster Manager. To spin up a cluster, you need only to specify the name and
which version of Apache Spark you would like to work with:

B05793_12_44.png
For the paid version of Databricks, you also get to choose which worker and driver
instance type and an unlimited number of clusters, including the ability to auto-scale
those clusters. With Community Edition, you are provided with a 6GB mini cluster that
can easily handle learning Spark and small proof of concepts.

6

As noted in the previous section, you can also choose which version of Apache Spark you
would like to use. At the time of writing, you can choose from Spark 1.3 to Spark 2.1
with all the major and minor versions in between:

B05793_12_45.png

Enterprise security
For those whom are security minded, the Databricks Enterprise Security Framework
includes encryption, integrated identity management, role-based access control, access

7

controls, and data governance. From an auditing certification perspective, Databricks has
completed SOC 2 Type 1 and offers HIPAA-compliant service; the service is also
available in isolated and secure AWS GovCloud (US).

For more information, please refer to the following links:

• Databricks Product Page:
https://databricks.com/product/databricks
• Databricks Primer: https://databricks.com/wp-
content/uploads/2016/02/Databricks-Primer.pdf
• Databricks Feature Primer: https://databricks.com/wp-
content/uploads/2016/02/Databricks-Feature-Primer.pdf
• Databricks Security:
https://databricks.com/product/security
• Protecting Enterprise Data on Apache Spark:
http://go.databricks.com/protecting-enterprise-data-on-
apache-spark-with-databricks

The free options of Databricks
The free option of Databricks is Databricks Community Edition, which provides you with
a mini 6GB cluster, interactive notebooks and dashboards, and a public environment to
share your work for free. Anyone can sign up for this option and the entire service –
including the ability to spin up different versions of Apache Spark on a single mini
cluster – is completely free.

For Academic institutions, there is also the Databricks Academic Partners Program
designed for both research and instruction. For these institutions, the only costs will be
for Amazon cloud services and you can potentially apply for an AWS in Education grant
to cover those costs. For more information, please refer to
https://databricks.com/academic.

Note that the full platform provides you with important production features including (but
not limited to) the ability to spin up an unlimited number of clusters, production jobs and
RESTful APIs, BI tools integration, GitHub integration, and advanced security
integration. To use the full platform, there is a 14-day free trial excluding AWS charges.

8

Signing up for the service
To sign up for the Databricks service, please go to http://databricks.com/try-
databricks. On this page, you will be given the option to sign up for the full-platform
trial (14-day free trial excluding AWS charges) and the Community Edition:

B05793_12_02.png
To use Databricks Community Edition, click on the appropriate Start Today button and
it will provide you with the Sign Up for Databricks Community Edition page. Fill out
the form and click on Sign Up, as noted in the following screenshot:

9

B05793_12_03.png

Once you agree to the Terms of Service, you will then need to confirm your e-mail
address, as indicated in the following screenshot:

10

B05793_12_04.png
Go to the e-mail address that you had provided in the sign-up page, and look for the
Welcome to Databricks! Please verify your email address e-mail. Once you have verified
your email address, you will be redirected to the Databricks login page to login (as noted
in the following screenshot):

11

B05793_12_05.png
In case you forget, the login for Databricks Community Edition can be accessed at
https://community.cloud.databricks.com. Once you have logged in, you will be
presented with the Databricks home page.

Working with Databricks Integrated Workspace
After you log in you will be presented with Databricks Integrated Workspace. It is a
starting point for all the things you can do with Databricks. The Databricks Integrated
Workspace is shown on the following screenshot.

B05793_12_06.png
Starting on the left-hand side of Databricks, you have the left-hand navigation bar that
allows you to:

12

• Databricks: Go back to this main page
• Home: Go to your primary workspace – the folder that contains your
own items
• Workspace: Go to the workspace that you were working in. For
example, if you were working with a notebook in a shared folder, clicking on
Workspace would go to the notebook in that folder while Home would go
back to your own personal workspace
• Recent: Review the most recent notebooks that you had opened
• Tables: Access any of the tables that you had created
• Clusters: Gives you access to the Databricks Cluster Manager to
quickly launch, expand, and/or terminate your clusters
• Search: Quickly find your notebooks using this handy search feature
• Jobs: Easy access to manage your scheduled jobs (available in paid
edition only)

The Featured Notebooks section in Databricks provides notebooks typically showcasing
the latest Spark features such as (at the time of writing) an Introduction to Structured
Streaming:

13

14

B05793_12_07.png
To access any of these notebooks, click on the notebook and it will immediately bring it
up and you can execute it. You will learn more on how to work with these notebooks in
the next section:

The lower frame of the Databricks page provides you with easy access to create new
items (for example, notebooks, clusters, tables, libraries, and so on), the latest
documentation, and any new messages:

15

16

B05793_12_08.png

Follow the Getting Started with Apache Spark on
Databricks guide

As you can see from the preceding screenshots, there are many different notebooks and
documentation, such as the Databricks Guide that you can utilize and reference. To help
you get started from scratch, there is the handy Getting Started with Apache Spark on
Databricks Guide available at: https://databricks.com/product/getting-
started-guide/quick-start (as shown in the following screenshot):

B05793_12_09.png
As noted in the description, this guide is the "Hello World" tutorial of Apache Spark
using Databricks. It contains multiple stages including a Quick Start that explains how to
quickly start using Apache Spark to separate modules for Datasets, DataFrames, Machine
Learning, and Streaming. These are self-contained modules so you can follow this guide
in whichever order you would like to focus on.

17

For example, to get to Writing your first Apache Spark Job, you can hover over Quick
Start and jump to the section, as shown in the following screenshot:

18

19

B05793_12_46.pngYou can access the code examples directly by importing the Quick
Start using Python notebook directly. To do this, click on the Quick Start using
Python link
(http://go.databricks.com/hubfs/notebooks/Quick_Start/Quick_Start_Usi
ng_Python.html) and you will get a view of the notebook.

As this is an HTML notebook, you can scroll through the notebook to view the code and
results, but it is not currently active:

20

21

B05793_12_47.png
To make it active, click on the Import Notebook button on the top right and the Import
Notebook dialog will appear (as shown in the following screenshot):

22

23

B05793_12_48.png
Copy the URL in the dialog box and go back to your Databricks Community Edition
workspace. From here, go to any folder (in the following screenshot we're using a
Shared folder, but you can put this anywhere you want), right-click on the folder to
activate the menu, and click on Import.

B05793_12_49.png
From here, the Databricks Import Notebooks dialog will appear. Click on the URL
button and paste the URL you had just copied from the original notebook.

B05793_12_50.png

24

Once you click Import, the notebook will be copied into your workspace in the folder
you had specified so you can execute it.

Similar to the HTML page, you can scroll through the page and review the results. But now
that the notebook is in your workspace, you can execute the notebook against an Apache
Spark cluster. Let's start by exploring this notebook by double-clicking the top cell with
the title Quick Start with Python.

Notice how the cell changes to edit mode so you can see the underlying Markdown code
as indicated by the %md in the first line of the cell. A markdown cell follows most of the
basic Markdown language syntax allowing you to provide a cell dedicated to text,
descriptions, and supplemental media such as images. Once you click outside of the
markdown cell (for example, click another cell), a markdown cell will immediately
resolve.

Next, let's click on the cell with the following code snippet:
Take a look at the file system

display(dbutils.fs.ls("/databricks-datasets/samples/docs/"))

This is PySpark code that uses the Databricks commands display and dbtils.fs.ls.
The display command is a powerful command that converts Spark DataFrames into
native visualizations (for example, formatted tables, bar charts, maps, and so on) as well
as visualizes various Spark ML algorithms. The dbutils.fs.ls command is basically a
ls command for any native DBFS (Databricks File System) or AWS S3 mounts to your
cluster. The execution of this code means you want to have a formatted table view of the
files in the /databricks-datasets/samples/docs/ folder.

While you can import your own data into Databricks, to help you get quickly
started there is a wide variety of datasets available in the /databricks-
datasets mount that you can work with. To import your own data, please
follow the Databricks Data Import How-To Guide at
https://databricks.com/wp-
content/uploads/2015/08/Databricks-how-to-data-
import.pdf.

25

To execute this command, you can either click the play button located in the top right of
the cell or using your keyboard, click <shift><enter>:

B05793_12_53.png
But wait, we forgot to start a Spark cluster so we can execute our notebook! That's okay,
the Databricks workspace includes the rather nifty feature that automatically launches a
cluster and attaches your notebook to it:

B05793_12_54.png
In this example, Databricks is automatically starting a Spark 2.0 (Scala 2.10) mini-
cluster. If you want to start a cluster with a different version of Apache Spark, click
Cancel, go to the Cluster Manager on the left-hand navigation so you can customize your
settings if you are ok with the cluster configuration, and then click Launch and Run and
a cluster will be created in the background, as shown in the following screenshot (notice
the pending state in the upper left):

26

B05793_12_55.png
Once the cluster has been created, the pending state will switch to the cluster name (in
this case, it is My Cluster) and the first cell (the display and dbutils.fs.ls
commands) will automatically execute, as shown in the following screenshot:

B05793_12_56.png

27

From this point onwards, you can execute the next few cells (either via the Run button or
type <shift><enter> in the cell) to run the following commands:

Setup the textFile RDD to read the README.md file

Note this is lazy

textFile = sc.textFile("/databricks-
datasets/samples/docs/README.md")

When performing an action (like a count) this is when the
textFile is read and aggregate calculated

Click on [View] to see the stages and executors

textFile.count()

As noted in the text within the notebook (as well as in the code comments), this is a
simple rowcount example where the first command is an RDD transformation to create
the textFile RDD by reading the README.md file in the /databricks-
datasets/samples/docs folder. The second action performs an RDD action to
execute the row count.

As shown in the following screenshot, upon executing the action, a Spark Jobs dialog
appears, which provides the real-time progress of the jobs and associated stages executed
to complete the textFile.count(). Once you click View, you will see the Spark UI
DAG of jobs and stages embedded directly in your notebook so you can easily debug
your Spark job:

28

B05793_12_57.png

Next steps
And just like that, you have executed your first Spark job within Databricks. Continue
working with this notebook and try out other datasets within the /databricks-datasets
folder. Don't forget, your notebook has revision history, so if you make a mistake and
need to revert to an older version of the notebook, just click on Revision History and
restore the version you want.

Other great resources include:

• Getting Started with Apache Spark on Databricks Guide:
https://databricks.com/product/getting-started-guide/quick-
start
• Databricks Guide: https://docs.databricks.com/user-
guide/getting-started.html
• Introduction to Databricks [Video]:
https://vimeo.com/130273206
• Databricks Cluster Manager and Jobs [Video]:
https://vimeo.com/156886719

29

• Data Visualizations in Databricks [Video]:
https://vimeo.com/156886721
• Collaboration in Databricks [Video]:
https://vimeo.com/156886720
• Data Exploration in Databricks [Video]:
https://vimeo.com/137874931

Using HDInsight on Microsoft Azure
With Databricks' Spark notebooks you get the most recent incarnations of Spark as they
are unveiled and pass the beta phase. However, Microsoft's HDInsight product offers
plenty of innovation as well at the expense of some lead-time to get the latest Spark
release.

With the Spark for Azure HDInsight product you get the Jupyter notebooks preinstalled
as well as everything that the Anaconda distribution of Python has to offer. Also, with the
recent purchase of Revolution Analytics by Microsoft, the HDInsight integrates R Server
exposing the largest R-compatible parallel analytics and machine-learning library. In
addition, HDInsight API allows your apps to connect to Azure Data Lake Store which, in
turn, lets you store trillions of files, each of which can be petabytes in size.

Read more about the Azure Data Lake Store here
https://azure.microsoft.com/en-us/services/data-lake-
store/.

The free options on HDInsight
When signing up for the Spark on Azure HDInsight, the offers are different when you are
a simple Joe, a startup, or a student or an academic.

As an individual, when you sign up, you get $200 credit towards services you use and 30-
days trial of any Azure services. Even though you will need to provide credit card
information it will not be charged at the end of your trial should you not decide to convert
to a paid offer at the end of the 30-day period.

For startups, Microsoft offers $150 a month of free Azure cloud services and free
software (such as the Visual Studio and Office package). The offer is available to tech
companies that are no older than five years and make less than $1 million.

30

If you are a student or an educator, you can go to
https://www.microsoftazurepass.com/azureu and access the free services through
that portal (as a student) or apply for free credits (if you are a researcher).

Signing up for the service
Let's finally sign up for the service. Go to https://azure.microsoft.com/en-
us/services/hdinsight/ and click on the FREE ACCOUNT link. You should see a
screen similar to the following:

B05793_12_10.png
After clicking on the Start free button you will be taken to the sign-in page. You need to
sign in with your Microsoft Account, that is, an account you registered with Microsoft. If
you do not have a Microsoft Account there's a link you can use to create one (see the link
highlighted in the following screenshot):

31

B05793_12_11.png
Once you sign in, you should be taken to a page that will allow you to sign up for the
service.

As you can see in the following screenshot, even though you provide the credit
card details, your card will not be charged unless you specifically transition to a
paid option.

First, you need to fill in some personal information:

32

B05793_12_12.png
Once you have filled it in, you will go through a two-factor verification: first, you need to
provide a phone number that the company will either call you on or send a text message
to with a verification code:

B05793_12_13.png

33

Once you enter the verification code you will be taken to the next screen that will prompt
you for the credit card details. After entering the information you will be taken to the last
step, which is acknowledging the subscription agreement. Once you sign up you should
see the following message; upon clicking on Start managing my service you will be
taken to the Azure Dashboard:

B05793_12_14.png

Microsoft Azure Dashboard
The Azure Dashboard is a one-stop shop for all things Azure: if you want to set up a new
cluster, add a storage account or scale up/down your cluster - this is where you do it:

34

B05793_12_15.png
On the left-hand side of the screen you have the full palette of services you can set up. In
the middle, you will be shown all the resources available in your subscription; for now
there is nothing, but this will change soon.

Setting up an HDInsight Spark cluster
Right now, we do not have any cluster running within our subscription, hence we did not
see any resources on our dashboard. Let's finally create our Spark cluster. Once you click
on the New button you will be shown the following options. You can either type
HDInsight in the search box, or scroll to the Intelligence + analytics option:

35

B05793_12_16.png
Once you select the HDInsight app we can start configuring the cluster. First, create a
name for your cluster.

Note that you cannot use the same name that we present in the following
example.

36

B05793_12_17.png
Next, move to the Cluster Configuration. From the Cluster Type dropdown select
Spark, the Version should be Spark 2.x.y (where x and y denote the latest offered version
of Spark), and the Cluster Tier we will keep as Standard. Click on Select or move to
the Credentials on the left-hand side.

There you need to create the logins for accessing the cluster or connecting to the cluster
via SSH; create these as you please. Once created, you will be taken to the Data Source
configuration:

37

B05793_12_18.png
In this example, we will stick with the defaults, that is, we will use the Azure Storage.
We will Create a new storage account.

Note that as with the cluster name, you cannot reuse the name as presented in
the preceding screenshot.

The Choose Default Container option should be treated as a default name for the folder
to store your data in; this name you can reuse.

Once you have configured your storage you will be presented with the Pricing page:

38

B05793_12_19.png
The options normally default to four workers and two head nodes; in our example, we
will use only two workers. Note that you can select from other machine configurations
with different price tags:

39

B05793_12_20.png
Having chosen your pricing tier all that is left is to create a new resource group and create
our cluster.

For convenience, check the Pin to dashboard checkbox; this will help
accessing your cluster as it will show every time you log in to your Azure
Dashboard.

Once created (it might take anything between 10-30 minutes), you shall see a screen
similar to the following:

40

B05793_12_21.png
Notice the running HDInsight cluster? We're ready to go!

Running Spark code
Once you click on the tile, you will be taken to the cluster overview page:

41

B05793_12_22.png
Here, you can learn everything about your cluster: its Status, Location, Subscription
name, and Cluster type, HDInsight version. It also shows how many machines there
are in your cluster in the Usage section. From here you can scale your cluster and access
all the features of Spark. If you click on the Cluster Dashboards you will be shown the
following options:

• HDInsight Cluster Dashboard: It takes you to the Ambari view of
your cluster. Here, you can change your cluster configuration at the very
granular level. For example, you get the access to all of the Spark /
HDInsight configuration options:

42

B05793_12_23.png

For an overview of all the Spark options, refer to Spark's documentation
http://spark.apache.org/docs/latest/configuration.html.

• Jupyter Notebook is the place we will spend most of our time as it
brings us to the Jupyter main page for our cluster.
• Spark History Server takes you to the logs for applications.
• Yarn is a scheduler of jobs. We will use it to monitor our jobs.

Running any Spark job, however, without data makes little sense. Thus, let's move the
data we used in Chapter 7, Introducing the ML Package over to the Azure Data Storage.

Managing data
When we created the Spark cluster we also created a storage account. If you go to your
Microsoft Azure Dashboard main view (just click on Microsoft Azure in the top left
corner of the page), under the All resources tile you should now see two options: the

43

HDInsight cluster and the Storage account. After clicking on the Storage account
option, you should see a view similar to the following screenshot:

B05793_12_24.png
Clicking on the Blobs tile will get you to the blob storage. The blob storage is an offering
that is completely data agnostic: it can store data in literally any format, such as text,
CSV, parquet, or JSON (to name just a few); the data can be structured or unstructured.

Click on the container name in the subsequent window to get to a long list of files already
present in your container. On top, click on Upload, select the file, and click on the
Upload button on the bottom of the tab.

Now, let's run some code.

Configuring your session
Before we do that, however, we need to configure our session: right now we have two
workers, each with 16 cores and 28GB of RAM so we can fine-tune the job to the data
better. First, navigate to your dashboard, click on your HDInsight Cluster, then Cluster

44

Dashboards, and finally on Jupyter Notebook. This will open a main screen for Jupyter
notebooks. You should see two folders: PySpark and Scala.

Go ahead and create a new folder by clicking on New and selecting Folder. Next, create
a new PySpark notebook inside the newly created folder.

HDInsight uses Sparkmagic that communicates with your Spark cluster through Livy.
Livy is Spark's REST server that allows you to communicate with your cluster from
anywhere in the world. Sparkmagic exposes a host of, so called, magic: a set of
commands to simplify interacting with Spark. At the general level the communication
looks similar to what is shown in the following diagram (source:
http://bit.ly/2hDNCY0):

B05793_12_25.png
First, let's configure our Spark session. In order to do so, inside your notebook type the
following:

%%configure -f

{

 "name": "learningPySpark_Example",

 "numExecutors": 2,

 "executorCores": 4,

 "executorMemory": "2GB"

}

• The %% indicates the magic: in this case it is the configure
command. The -f flag will force drop the session if it already has been
created and will create a new one. The configuration string is JSON-
formatted; you can pass any of the following most used commands (sorted in

45

a somewhat arbitrary order from what we deem most to least likely
used):name: Tthe name of your applicationnumExecutors: Number of
executorsexecutorCores: Number of executor coresexecutorMemory:
Amount of memory requested for the applicationpyFiles: List of other
Python files to be used during the session, can be single.py file(s)
(separated by commas) or .egg/.zip whole moduleskind: A kind of the
kernel to use, can be pyspark, pyspark3, spark, or sparkr; this parameter
is automatically passed by the Jupyter notebook when you run the
%%configure so you do not have to specify thisdriverMemory: How much
memory to reserve on the driverdriverCores: How many cores to use on
the driverheartbeatTimeoutInSecond: Indicates the longest interval (in
seconds) between heartbeat communication to/from the Spark server

The remaining parameters are less likely used and you can look them up online
if required.

Now that we have our session configured you should see a similar output from running
the code:

B05793_12_26.png
Other magic words include %%help, which will show all the commands that you can run:

46

B05793_12_27.png
We will try some of them soon.

Running code
Having the session configured, let's start it and import our data from the storage account.
Run the following code in your notebook (and substitute your names in place of the
storage and container):

storage = 'learningpyspark'

container = 'storage'

f = 'births_transformed.csv.gz'

conn = 'wasb://{0}@{1}.blob.core.windows.net/{2}'.format(

 container,

 server,

 f

)

births = spark.read.csv(

 conn,

 header=True, inferSchema=True)

47

The string for connecting to the Azure Blob Storage has the following format:
wasb[s]://<container_name>@<storage_account_name>.blob.
core.windows.net/<path>.

Running the preceding code should create the session and load the data into our
notebook. You should see something similar to the following:

B05793_12_28.png
Now that we have loaded our data we can run some simple code. Let's aggregate the data
by BIRTH_PLACE in a way we already know:

for col in births \

 .groupby('BIRTH_PLACE') \

 .count() \

 .sort('BIRTH_PLACE') \

 .collect():

 print(col)

The preceding code produces the following output:

B05793_12_29.png
The same (and more) can be attained with the %%sql magic:

%%sql -o birthPlace

48

SELECT BIRTH_PLACE,

 COUNT(*) AS Count

FROM births_sql

GROUP BY BIRTH_PLACE

ORDER BY BIRTH_PLACE

What follows the %%sql is a pure ANSI SQL syntax that aggregates the data at the
BIRTH_PLACE level and produces the following, nicely formatted table:

B05793_12_30.png
The output, however, can easily be changed at a click of a button to either of these
options:

B05793_12_31.png
This is what a pie chart looks like:

49

B05793_12_32.png
The -o flag we used in the %%sql statement instructs the magic to expose the result
locally as pandas DataFrame.

Use the -o flag carefully. As stated previously, the results are being exposed
locally, that is, the data is moved back to the head node. If the result is big this
will not be the most efficient way to look at your data.

Now you can access and play with the data in a more pythonic way:
%%local

birthPlace.head()

Note the %%local magic - you can now load, for example, Matplotlib library and
visualize your data that way.

The preceding code will produce a very similar output:

50

B05793_12_33.png
So far we have played with Spark in our local machine so execution was with a single
node only. Let's check how this works on the cluster.

Monitoring jobs execution with Yarn
First, open the Yarn UI (User Interface): go to the Cluster Dashboards on your
HDInsight cluster, and click on Yarn. A window similar to the following should pop up:

B05793_12_34.png
It lists all the running and finished applications. Clicking on the ApplicationMaster
under the Tracking UI column will open the execution log for your application:

51

B05793_12_35.png
The view lists all the jobs completed during the execution of the app. You can see that
some of the stages were skipped: this is because those stages were executed earlier and
Spark was intelligent enough to recognize that and not run the same jobs multiple times.

You can also glimpse inside each job and see what stages were executed by what
executors, and other interesting statistics for each job stage:

52

B05793_12_36.png
As you can see, each task took between 1ms to 27ms to run with the median being 3ms.
GC Time is the Garbage Collection time. The view lists both of our executors (as
requested), the time it took to run each task, and how many tasks failed and succeeded
(among other things). At the following link, you can check information about each task
execution: status, executor ID, when it was launched, and how long it took to execute.

If you want to learn more about the locality level you can read more here:
https://spark.apache.org/docs/latest/tuning.html#data-
locality.

53

Summary
In this chapter we provided you with an introduction to two great (and free) offerings of
Spark in the cloud: the (always free) Databricks Community Edition, and Microsoft's
HDInsight free 30-day trial offer. We presented how you can sign up, configure and get
started with these two offers. This is by no means an exhaustive description of the offers
but rather an introduction to get you started. Also, for space reasons, we did not cover
other Spark offers from other players like Google or Amazon. These, however, you can
look up by following the links we provided at the beginning of the chapter.

In the next chapter we will show you how to leave the warm nest of notebooks and
submit your jobs using the spark-submit command. It will be a prelude to how you can
programmatically submit and run jobs in much larger clusters.

